This is written by someone that is not in aerospace that thinks terrestrially.
Engineering is always a question of tradeoffs.
Launch costs are dropping, and we’re still using inefficient rockets. Space elevators & space trains, among others, can drop this much more, the launch costs are still dropping, even using rockets, maybe we’ll never get to elevators & trains the costs will drop so low!
Radiation shielding is not required for VLEO or LEO, and phenomenally more capable aerospace processors are near - hi Microchip Inc! There are many other radiation solutions coming, no doubt with nuclear power.
Satellites can be upgraded at scale, though for many things, it does not make $ sense to upgrade them, but fuel , reaction wheels, solar panels, among other things do make $ sense to replace.
Latency was technically solved in 1995 & 2001 with the first laser comms missions NASDA’s ETS-VI kiku-6 and ESA’s Artemis , and Laser crossbars for comms are common. A full laser TDRS no RF is not yet extant but soon. Earth to deepspace was just demonstrated by ESA.
Cooling can be significantly improved due to lower launch costs, heat piping, RTGs, TEGs, and thermoradiative cells, not to mention sunside solar and darkside inline radiators
Furthermore, it is very likely that as neuromorphics with superior SWaP emerge, we could see very different models of space based computation.
Economic tradeoffs should drive many of these decisions as I’m not discussing the other applications of datacenter in space
> Cooling can be significantly improved due to lower launch costs, heat piping, RTGs, TEGs, and thermoradiative cells, not to mention sunside solar and darkside inline radiators
You're saying they're going to steal the night? We'll see the sun in the day, radiative cooling for surveillance AI in the time formerly known as night?
I'll confess that the numbers aren't nearly as bad as I'd thought. Apparently, you can dissipate 1MW at 100°C with a 17m diameter sphere at night. So it's like the size of a small house. It doesn't even glow. On the other hand, you need a lot of temperature differential to move the heat out fast enough, which means your TPUs are going to be hellishly hot.
Though you'd probably only run it when it's in the sun and radiate in other directions, so you don't have to store the power in heavy batteries. You need a 56m diameter disk of solar panels to provide 1MW, don't forget that.
(All figures were vibe calculated with Claude and are unchecked.)
Engineering is always a question of tradeoffs.
Launch costs are dropping, and we’re still using inefficient rockets. Space elevators & space trains, among others, can drop this much more, the launch costs are still dropping, even using rockets, maybe we’ll never get to elevators & trains the costs will drop so low!
Radiation shielding is not required for VLEO or LEO, and phenomenally more capable aerospace processors are near - hi Microchip Inc! There are many other radiation solutions coming, no doubt with nuclear power.
Satellites can be upgraded at scale, though for many things, it does not make $ sense to upgrade them, but fuel , reaction wheels, solar panels, among other things do make $ sense to replace.
Latency was technically solved in 1995 & 2001 with the first laser comms missions NASDA’s ETS-VI kiku-6 and ESA’s Artemis , and Laser crossbars for comms are common. A full laser TDRS no RF is not yet extant but soon. Earth to deepspace was just demonstrated by ESA.
Cooling can be significantly improved due to lower launch costs, heat piping, RTGs, TEGs, and thermoradiative cells, not to mention sunside solar and darkside inline radiators
Furthermore, it is very likely that as neuromorphics with superior SWaP emerge, we could see very different models of space based computation.
Economic tradeoffs should drive many of these decisions as I’m not discussing the other applications of datacenter in space